blog posts and news stories

Classrooms and Districts: Breaking Down Silos in Education Research and Evidence

I just got back from Edsurge’s Fusion conference. The theme, aimed at classroom and school leaders, was personalizing classroom instruction. This is guided by learning science, which includes brain development and the impact of trauma, as well as empathetic caregiving, as Pamela Cantor beautifully explained in her keynote. It also leads to detailed characterizations of learner variability being explored at Digital Promise by Vic Vuchic’s team, which is providing teachers with mappings between classroom goals and tools and strategies that can address learners who vary in background, cognitive skills, and socio-emotional character.

One of the conference tracks that particularly interested me was the workshops and discussions under “Research & Evidence”. Here is where I experienced a disconnect between Empirical ’s research policy-oriented work interpreting ESSA and Fusion’s focus on improving the classroom.

  • The Fusion conference is focused at the classroom level, where teachers along with their coaches and school leaders are making decisions about personalizing the instruction to students. They advocate basing decisions on research and evidence from the learning sciences.
  • Our work, also using research and evidence, has been focused on the school district level where decisions are about procurement and implementation of educational materials including the technical infrastructure needed, for example, for edtech products.

While the classroom and district levels have different needs and resources and look to different areas of scientific expertise, they need not form conceptual silos. But the differences need to be understood.

Consider the different ways we look at piloting a new product.

  • The Digital Promise edtech pilot framework attempts to move schools toward a more planful approach by getting them to identify and quantify the problem for which the product being piloted could be a solution. The success in the pilot classrooms is evaluated by the teachers, where detailed understandings by the teacher don’t call for statistical comparisons. Their framework points to tools such as the RCE Coach that can help with the statistics to support local decisions.
  • Our work looks at pilots differently. Pilots are excellent for understanding implementability and classroom acceptance (and working with developers to improve the product), but even with rapid cycle tools, the quantitative outcomes are usually not available in time for local decisions. We are more interested in how data can be accumulated nationally from thousands of pilots so that teachers and administrators can get information on which products are likely to work in their classrooms given their local demographics and resources. This is where review sites like Edsurge product reviews or Noodle’s ProcureK12) could be enhanced with evidence about for whom, and under what conditions, the products work best. With over 5,000 edtech products, an initial filter to help choose what a school should pilot will be necessary.

A framework that puts these two approaches together is promulgated in the Every Student Succeeds Act (ESSA). ESSA defines four levels of evidence, based on the strength of the causal inference about whether the product works. More than just a system for rating the scientific rigor of a study, it is a guide to developing a research program with a basis in learning science. The base level says that the program must have a rationale. This brings us back to the Digital Promise edtech pilot framework needing teachers to define their problem. The ESSA level 1 rationale is what the pilot framework calls for. Schools must start thinking through what the problem is that needs to be solved and why a particular product is likely to be a solution. This base level sets up the communication between educators and developers about not just whether the product works in the classroom, but how to improve it.

The next level in ESSA, called “correlational,” is considered weak evidence, because it shows only that the product has “promise” and is worth studying with a stronger method. However, this level is far more useful as a way for developers to gather information about which parts of the program are driving student results, and which patterns of usage may be detrimental. Schools can see if there is an amount of usage that maximizes the value of the product (rather than depending solely on the developer’s rationale). This level 2 calls for piloting the program and examining quantitative results. To get correlational results, the pilot must have enough students and may require going beyond a single school. This is a reason that we usually look for a district’s involvement in a pilot.

The top two levels in the ESSA scheme involve comparisons of students and teachers who use the product to those who do not. These are the levels where it begins to make sense to combine a number of studies of the same product from different districts in a statistical process called meta-analysis so we can start to make generalizations. At these levels, it is very important to look beyond just the comparison of the program group and the control group and gather information on the characteristics of schools, teachers, and students who benefit most (and least) from the product. This is the evidence of most value to product review sites.

When it comes to characterizing schools, teachers, and students, the “classroom” and the “district” approach have different, but equally important, needs.

  • The learner variability project has very fine-grained categories that teachers are able to establish for the students in their class.
  • For generalizable evidence, we need characteristics that are routinely collected by the schools. To make data analysis for efficacy studies a common occurrence, we have to avoid expensive surveys and testing of students that are used only for the research. Furthermore, the research community must reach consensus on a limited number of variables that will be used in research. Fortunately, another aspect of ESSA is the broadening of routine data collection for accountability purposes, so that information on improvements in socio-emotional learning or school climate will be usable in studies.

Edsurge and Digital Promise are part of a west coast contingent of researchers, funders, policymakers, and edtech developers that has been discussing these issues. We look forward to continuing this conversation within the framework provided by ESSA. When we look at the ESSA levels as not just vertical but building out from concrete classroom experience to more abstract and general results from thousands of school districts, then learning science and efficacy research are combined. This strengthens our ability to serve all students, teachers, and school leaders.

2018-10-08

The Rebel Alliance is Growing

The rebellion against the old NCLB way of doing efficacy research is gaining force. A growing community among edtech developers, funders, researchers, and school users has been meeting in an attempt to reach a consensus on an alternative built on ESSA.

This is being assisted by openness in the directions currently being pursued by IES. In fact, we are moving into a new phase marked by two-way communication with the regime. While the rebellion hasn’t yet handed over its lightsabers, it is encouraged by the level of interest from prominent researchers.

From these ongoing discussions, there have been some radical suggestions inching toward consensus. A basic idea now being questioned is this:

The difference between the average of the treatment group and the average of the control group is a valid measure of effectiveness.

There are two problems with this:

  1. In schools, there’s no “placebo” or something that looks like a useful program but is known to have zero effectiveness. Whatever is going on in the schools, or classes, or with teachers and students in the control condition has some usefulness or effectiveness. The usefulness of the activities in the control classes or schools may be greater than the activities being evaluated in the study, or may be not as useful. The study may find that the “effectiveness” of the activities being studied is positive, negative, or too small to be discerned statistically by the study. In any case, the size (negative or positive) of the effect is determined as much by what’s being done in the control group as the treatment group.
  2. Few educational activities have the same level of usefulness for all teachers and students. Looking at only the average will obscure the differences. For example, we ran a very large study for the U.S. Department of Education of a STEM program where we found, on average, the program was effective. What the department didn’t report was that it only worked for the white kids, not the black kids. The program increased instead of reducing the existing achievement gap. If you are considering adopting this STEM program, the impact on the different subgroups is relevant–a high minority school district may want to avoid it. Also, to make the program better, the developers need to know where it works and where it doesn’t. Again, the average impact is not just meaningless but also can be misleading.

A solution to the overuse of the average difference from studies is to conduct a lot more studies. The price the ED paid for our large study could have paid for 30 studies of the kind we are now conducting in the same state of the same program; in 10% of the time of the original study. If we had 10 different studies for each program, where studies are conducted in different school districts with different populations and levels of resources, the “average” across these studies start to make sense. Importantly, the average across these 10 studies for each of the subgroups will give a valid picture of where, how, and with which students and teachers the program tends to work best. This kind of averaging used in research is called meta-analysis and allows many small differences found across studies to build on the power of each study to generate reliable findings.

If developers or publishers of the products being used in schools took advantage of their hundreds of implementations to gather data, and if schools would be prepared to share student data for this research, we could have researcher findings that both help schools decide what will likely work for them and help developers improve their products.

2018-09-21

A Rebellion Against the Current Research Regime

Finally! There is a movement to make education research more relevant to educators and edtech providers alike.

At various conferences, we’ve been hearing about a rebellion against the “business as usual” of research, which fails to answer the question of, “Will this product work in this particular school or community?” For educators, the motive is to find edtech products that best serve their students’ unique needs. For edtech vendors, it’s an issue of whether research can be cost-effective, while still identifying a product’s impact, as well as helping to maximize product/market fit.

The “business as usual” approach against which folks are rebelling is that of the U.S. Education Department (ED). We’ll call it the regime. As established by the Education Sciences Reform Act of 2002 and the Institute of Education Sciences (IES), the regime anointed the randomized control trial (or RCT) as the gold standard for demonstrating that a product, program, or policy caused an outcome.

Let us illustrate two ways in which the regime fails edtech stakeholders.

First, the regime is concerned with the purity of the research design, but not whether a product is a good fit for a school given its population, resources, etc. For example, in an 80-school RCT that the Empirical team conducted under an IES contract on a statewide STEM program, we were required to report the average effect, which showed a small but significant improvement in math scores (Newman et al., 2012). The table on page 104 of the report shows that while the program improved math scores on average across all students, it didn’t improve math scores for minority students. The graph that we provide here illustrates the numbers from the table and was presented later at a research conference.

bar graph representing math, science, and reading scores for minority vs non-minority students

IES had reasons couched in experimental design for downplaying anything but the primary, average finding, however this ignores the needs of educators with large minority student populations, as well as of edtech vendors that wish to better serve minority communities.

Our RCT was also expensive and took many years, which illustrates the second failing of the regime: conventional research is too slow for the fast-moving innovative edtech development cycles, as well as too expensive to conduct enough research to address the thousands of products out there.

These issues of irrelevance and impracticality were highlighted last year in an “academic symposium” of 275 researchers, edtech innovators, funders, and others convened by the organization now called Jefferson Education Exchange (JEX). A popular rallying cry coming out of the symposium is to eschew the regime’s brand of research and begin collecting product reviews from front-line educators. This would become a Consumer Reports for edtech. Factors associated with differences in implementation are cited as a major target for data collection. Bart Epstein, JEX’s CEO, points out: “Variability among and between school cultures, priorities, preferences, professional development, and technical factors tend to affect the outcomes associated with education technology. A district leader once put it to me this way: ‘a bad intervention implemented well can produce far better outcomes than a good intervention implemented poorly’.”

Here’s why the Consumer Reports idea won’t work. Good implementation of a program can translate into gains on outcomes of interest, such as improved achievement, reduction in discipline referrals, and retention of staff, but only if the program is effective. Evidence that the product caused a gain on the outcome of interest is needed or else all you measure is the ease of implementation and student engagement. You wouldn’t know if the teachers and students were wasting their time with a product that doesn’t work.

We at Empirical Education are joining the rebellion. The guidelines for research on edtech products we recently prepared for the industry and made available here is a step toward showing an alternative to the regime while adopting important advances in the Every Student Succeeds Act (ESSA).

We share the basic concern that established ways of conducting research do not answer the basic question that educators and edtech providers have: “Is this product likely to work in this school?” But we have a different way of understanding the problem. From years of working on federal contracts (often as a small business subcontractor), we understand that ED cannot afford to oversee a large number of small contracts. When there is a policy or program to evaluate, they find it necessary to put out multi-million-dollar, multi-year contracts. These large contracts suit university researchers, who are not in a rush, and large research companies that have adjusted their overhead rates and staffing to perform on these contracts. As a consequence, the regime becomes focused on the perfection in the design, conduct, and reporting of the single study that is intended to give the product, program, or policy a thumbs-up or thumbs-down.

photo of students in a classroom on computers

There’s still a need for a causal research design that can link conditions such as resources, demographics, or teacher effectiveness with educational outcomes of interest. In research terminology, these conditions are called “moderators,” and in most causal study designs, their impact can be measured.

The rebellion should be driving an increase the number of studies by lowering their cost and turn-around time. Given our recent experience with studies of edtech products, this reduction can reach a factor of 100. Instead of one study that costs $3 million and takes 5 years, think in terms of a hundred studies that cost $30,000 each and are completed in less than a month. If for each product, there are 5 to 10 studies that are combined, they would provide enough variation and numbers of students and schools to detect differences in kinds of schools, kinds of students, and patterns of implementation so as to find where it works best. As each new study is added, our understanding of how it works and with whom improves.

It won’t be enough to have reviews of product implementation. We need an independent measure of whether—when implemented well—the intervention is capable of a positive outcome. We need to know that it can make (i.e., cause) a difference AND under what conditions. We don’t want to throw out research designs that can detect and measure effect sizes, but we should stop paying for studies that are slow and expensive.

Our guidelines for edtech research detail multiple ways that edtech providers can adapt research to better work for them, especially in the era of ESSA. Many of the key recommendations are consistent with the goals of the rebellion:

  • The usage data collected by edtech products from students and teachers gives researchers very precise information on how well the program was implemented in each school and class. It identifies the schools and classes where implementation met the threshold for which the product was designed. This is a key to lowering cost and turn-around time.
  • ESSA offers four levels of evidence which form a developmental sequence, where the base level is based on existing learning science and provides a rationale for why a school should try it. The next level looks for a correlation between an important element in the rationale (measured through usage of that part of the product) and a relevant outcome. This is accepted by ESSA as evidence of promise, informs the developers how the product works, and helps product marketing teams get the right fit to the market. a pyramid representing the 4 levels of ESSA
  • The ESSA level that provides moderate evidence that the product caused the observed impact requires a comparison group matched to the students or schools that were identified as the users. The regime requires researchers to report only the difference between the user and comparison groups on average. Our guidelines insist that researchers must also estimate the extent to which an intervention is differentially effective for different demographic categories or implementation conditions.

From the point of view of the regime, nothing in these guidelines actually breaks the rules and regulations of ESSA’s evidence standards. Educators, developers, and researchers should feel empowered to collect data on implementation, calculate subgroup impacts, and use their own data to generate evidence sufficient for their own decisions.

A version of this article was published in the Edmarket Essentials magazine.

2018-05-09

Jefferson Education Accelerator Contracts with Empirical for Evidence as a Service™

Jefferson Education Accelerator (JEA) has contracted with Empirical Education Inc. for research services that will provide evidence of the impact of education technology products developed by their portfolio companies. JEA’s mission is to support and evaluate promising edtech solutions in order to help educators make more informed decisions about the products they invest in. The study is designed to meet level 2 or “moderate” evidence as defined by the Every Student Succeeds Act. Empirical will provide a Student Impact Report under its Evidence as a Service offering, which combines student-level product usage data and a school district’s administrative data to conduct a comparison group study. Denis Newman, Empirical’s CEO stated, “This is a perfect application of our Evidence as a Service product, which provides fast answers to questions about which kids will benefit the most from any particular learning program.” Todd Bloom, JEA’s Chief Academic Officer and Research Associate Professor at UVA’s Curry School of Education, commented: “Empirical Education is a highly respected research firm and offers the type of aggressive timeline that is sorely needed in the fast-paced edtech market.” A report on impact in the school year 2017-2018 is expected to be completed in July.

2018-02-20
Archive