blog posts and news stories

McGraw Hill Education ALEKS Study Published

We worked with McGraw Hill in 2021 to evaluate the effect of ALEKS, an adaptive program for math and science, in California and Arizona. These School Impact reports, like all of our reports, were designed to meet The Every Student Succeeds Act (ESSA) evidence standards.

During this process of working with McGraw Hill, we found evidence that the implementation of ALEKS in Arizona school districts during the 2018-2019 school year had a positive effect on the AzMERIT End of Course Algebra I and Algebra II assessments, especially for students from historically disadvantaged populations. This School Impact report—meeting ESSA evidence tier 3: Promising Evidence—identifies the school-level effects of active ALEKS usage on achievement compared to similar AZ schools not using ALEKS.

Please visit our McGraw Hill webpage to read the ALEKS Arizona School Impact report.

What is ESSA?

For more information on ESSA in education and how Empirical Education incorporates the ESSA standards into our work, check out our ESSA page.

2022-05-11

View from the West Coast: Relevance is More Important than Methodological Purity

Bob Slavin published a blog post in which he argues that evaluation research can be damaged by using the cloud-based data routinely collected by today’s education technology (edtech). We see serious flaws with this argument and it is quite clear that he directly opposes the position we have taken in a number of papers and postings, and also discussed as part of the west coast conversations about education research policy. Namely, we’ve argued that using the usage data routinely collected by edtech can greatly improve the relevance and usefulness of evaluations.

Bob’s argument is that if you use data collected during the implementation of the program to identify students and teachers who used the product as intended, you introduce bias. The case he is concerned with is in a matched comparison study (or quasi-experiment) where the researcher has to find the right matching students or classes to the students using the edtech. The key point he makes is:

“students who used the computers [or edtech product being evaluated] were more motivated or skilled than other students in ways the pretests do not detect.”

That is, there is an unmeasured characteristic, let’s call it motivation, that both explains the student’s desire to use the product and explains why they did better on the outcome measure. Since the characteristic is not measured, you don’t know which students in the control classes have this motivation. If you select the matching students only on the basis of their having the same pretest level, demographics, and other measured characteristics but you don’t match on “motivation”, you have biased the result.

The first thing to note about this concern, is that there may not be a factor such motivation that explains both edtech usage and the favorable outcome. It is just that there is a theoretical possibility that such a variable is driving the result. The bias may or may not be there and to reject a method because there is an unverifiable possibility of bias is an extreme move.

Second, it is interesting that he uses an example that seems concrete but is not at all specific to the bias mechanism he’s worried about.

“Sometimes teachers use computer access as a reward for good work, or as an extension activity, in which case the bias is obvious.”

This isn’t a problem of an unmeasured variable at all. The problem is that the usage didn’t cause the improvement—rather, the improvement caused the usage. This would be a problem in a randomized “gold standard” experiment. The example makes it sound like the problem is “obvious” and concrete, when Bob’s concern is purely theoretical. This example is a good argument for having the kind of implementation analyses of the sort that ISTE is doing in their Edtech Advisor and Jefferson Education Exchange has embarked on.

What is most disturbing about Bob’s blog post is that he makes a statement that is not supported by the ESSA definitions or U.S. Department of Education regulations or guidance. He claims that:

“In order to reach the second level (“moderate”) of ESSA or Evidence for ESSA, a matched study must do everything a randomized study does, including emphasizing ITT [Intent To Treat, i.e., using all students in the pre-identified schools or classes where administrators intended to use the product] estimates, with the exception of randomizing at the start.”

It is true that Bob’s own site Evidence for ESSA, will not accept any study that does not follow the ITT protocol but ESSA, itself, does not require that constraint.

Essentially, Bob is throwing away relevance to school decision-makers in order to maintain an unnecessary purity of research design. School decision-makers care whether the product is likely to work with their school’s population and available resources. Can it solve their problem (e.g., reduce achievement gaps among demographic categories) if they can implement it adequately? Disallowing efficacy studies that consider compliance to a pre-specified level of usage in selecting the “treatment group” is to throw out relevance in favor or methodological purity. Yes, there is a potential for bias, which is why ESSA considers matched-comparison efficacy studies to be “moderate” evidence. But school decisions aren’t made on the basis of which product has the largest average effect when all the non-users are included. A measure of subgroup differences, when the implementation is adequate, provides more useful information.

2018-12-27

The Rebel Alliance is Growing

The rebellion against the old NCLB way of doing efficacy research is gaining force. A growing community among edtech developers, funders, researchers, and school users has been meeting in an attempt to reach a consensus on an alternative built on ESSA.

This is being assisted by openness in the directions currently being pursued by IES. In fact, we are moving into a new phase marked by two-way communication with the regime. While the rebellion hasn’t yet handed over its lightsabers, it is encouraged by the level of interest from prominent researchers.

From these ongoing discussions, there have been some radical suggestions inching toward consensus. A basic idea now being questioned is this:

The difference between the average of the treatment group and the average of the control group is a valid measure of effectiveness.

There are two problems with this:

  1. In schools, there’s no “placebo” or something that looks like a useful program but is known to have zero effectiveness. Whatever is going on in the schools, or classes, or with teachers and students in the control condition has some usefulness or effectiveness. The usefulness of the activities in the control classes or schools may be greater than the activities being evaluated in the study, or may be not as useful. The study may find that the “effectiveness” of the activities being studied is positive, negative, or too small to be discerned statistically by the study. In any case, the size (negative or positive) of the effect is determined as much by what’s being done in the control group as the treatment group.
  2. Few educational activities have the same level of usefulness for all teachers and students. Looking at only the average will obscure the differences. For example, we ran a very large study for the U.S. Department of Education of a STEM program where we found, on average, the program was effective. What the department didn’t report was that it only worked for the white kids, not the black kids. The program increased instead of reducing the existing achievement gap. If you are considering adopting this STEM program, the impact on the different subgroups is relevant–a high minority school district may want to avoid it. Also, to make the program better, the developers need to know where it works and where it doesn’t. Again, the average impact is not just meaningless but also can be misleading.

A solution to the overuse of the average difference from studies is to conduct a lot more studies. The price the ED paid for our large study could have paid for 30 studies of the kind we are now conducting in the same state of the same program; in 10% of the time of the original study. If we had 10 different studies for each program, where studies are conducted in different school districts with different populations and levels of resources, the “average” across these studies start to make sense. Importantly, the average across these 10 studies for each of the subgroups will give a valid picture of where, how, and with which students and teachers the program tends to work best. This kind of averaging used in research is called meta-analysis and allows many small differences found across studies to build on the power of each study to generate reliable findings.

If developers or publishers of the products being used in schools took advantage of their hundreds of implementations to gather data, and if schools would be prepared to share student data for this research, we could have researcher findings that both help schools decide what will likely work for them and help developers improve their products.

2018-09-21

A Rebellion Against the Current Research Regime

Finally! There is a movement to make education research more relevant to educators and edtech providers alike.

At various conferences, we’ve been hearing about a rebellion against the “business as usual” of research, which fails to answer the question of, “Will this product work in this particular school or community?” For educators, the motive is to find edtech products that best serve their students’ unique needs. For edtech vendors, it’s an issue of whether research can be cost-effective, while still identifying a product’s impact, as well as helping to maximize product/market fit.

The “business as usual” approach against which folks are rebelling is that of the U.S. Education Department (ED). We’ll call it the regime. As established by the Education Sciences Reform Act of 2002 and the Institute of Education Sciences (IES), the regime anointed the randomized control trial (or RCT) as the gold standard for demonstrating that a product, program, or policy caused an outcome.

Let us illustrate two ways in which the regime fails edtech stakeholders.

First, the regime is concerned with the purity of the research design, but not whether a product is a good fit for a school given its population, resources, etc. For example, in an 80-school RCT that the Empirical team conducted under an IES contract on a statewide STEM program, we were required to report the average effect, which showed a small but significant improvement in math scores (Newman et al., 2012). The table on page 104 of the report shows that while the program improved math scores on average across all students, it didn’t improve math scores for minority students. The graph that we provide here illustrates the numbers from the table and was presented later at a research conference.

bar graph representing math, science, and reading scores for minority vs non-minority students

IES had reasons couched in experimental design for downplaying anything but the primary, average finding, however this ignores the needs of educators with large minority student populations, as well as of edtech vendors that wish to better serve minority communities.

Our RCT was also expensive and took many years, which illustrates the second failing of the regime: conventional research is too slow for the fast-moving innovative edtech development cycles, as well as too expensive to conduct enough research to address the thousands of products out there.

These issues of irrelevance and impracticality were highlighted last year in an “academic symposium” of 275 researchers, edtech innovators, funders, and others convened by the organization now called Jefferson Education Exchange (JEX). A popular rallying cry coming out of the symposium is to eschew the regime’s brand of research and begin collecting product reviews from front-line educators. This would become a Consumer Reports for edtech. Factors associated with differences in implementation are cited as a major target for data collection. Bart Epstein, JEX’s CEO, points out: “Variability among and between school cultures, priorities, preferences, professional development, and technical factors tend to affect the outcomes associated with education technology. A district leader once put it to me this way: ‘a bad intervention implemented well can produce far better outcomes than a good intervention implemented poorly’.”

Here’s why the Consumer Reports idea won’t work. Good implementation of a program can translate into gains on outcomes of interest, such as improved achievement, reduction in discipline referrals, and retention of staff, but only if the program is effective. Evidence that the product caused a gain on the outcome of interest is needed or else all you measure is the ease of implementation and student engagement. You wouldn’t know if the teachers and students were wasting their time with a product that doesn’t work.

We at Empirical Education are joining the rebellion. The guidelines for research on edtech products we recently prepared for the industry and made available here is a step toward showing an alternative to the regime while adopting important advances in the Every Student Succeeds Act (ESSA).

We share the basic concern that established ways of conducting research do not answer the basic question that educators and edtech providers have: “Is this product likely to work in this school?” But we have a different way of understanding the problem. From years of working on federal contracts (often as a small business subcontractor), we understand that ED cannot afford to oversee a large number of small contracts. When there is a policy or program to evaluate, they find it necessary to put out multi-million-dollar, multi-year contracts. These large contracts suit university researchers, who are not in a rush, and large research companies that have adjusted their overhead rates and staffing to perform on these contracts. As a consequence, the regime becomes focused on the perfection in the design, conduct, and reporting of the single study that is intended to give the product, program, or policy a thumbs-up or thumbs-down.

photo of students in a classroom on computers

There’s still a need for a causal research design that can link conditions such as resources, demographics, or teacher effectiveness with educational outcomes of interest. In research terminology, these conditions are called “moderators,” and in most causal study designs, their impact can be measured.

The rebellion should be driving an increase the number of studies by lowering their cost and turn-around time. Given our recent experience with studies of edtech products, this reduction can reach a factor of 100. Instead of one study that costs $3 million and takes 5 years, think in terms of a hundred studies that cost $30,000 each and are completed in less than a month. If for each product, there are 5 to 10 studies that are combined, they would provide enough variation and numbers of students and schools to detect differences in kinds of schools, kinds of students, and patterns of implementation so as to find where it works best. As each new study is added, our understanding of how it works and with whom improves.

It won’t be enough to have reviews of product implementation. We need an independent measure of whether—when implemented well—the intervention is capable of a positive outcome. We need to know that it can make (i.e., cause) a difference AND under what conditions. We don’t want to throw out research designs that can detect and measure effect sizes, but we should stop paying for studies that are slow and expensive.

Our guidelines for edtech research detail multiple ways that edtech providers can adapt research to better work for them, especially in the era of ESSA. Many of the key recommendations are consistent with the goals of the rebellion:

  • The usage data collected by edtech products from students and teachers gives researchers very precise information on how well the program was implemented in each school and class. It identifies the schools and classes where implementation met the threshold for which the product was designed. This is a key to lowering cost and turn-around time.
  • ESSA offers four levels of evidence which form a developmental sequence, where the base level is based on existing learning science and provides a rationale for why a school should try it. The next level looks for a correlation between an important element in the rationale (measured through usage of that part of the product) and a relevant outcome. This is accepted by ESSA as evidence of promise, informs the developers how the product works, and helps product marketing teams get the right fit to the market. a pyramid representing the 4 levels of ESSA
  • The ESSA level that provides moderate evidence that the product caused the observed impact requires a comparison group matched to the students or schools that were identified as the users. The regime requires researchers to report only the difference between the user and comparison groups on average. Our guidelines insist that researchers must also estimate the extent to which an intervention is differentially effective for different demographic categories or implementation conditions.

From the point of view of the regime, nothing in these guidelines actually breaks the rules and regulations of ESSA’s evidence standards. Educators, developers, and researchers should feel empowered to collect data on implementation, calculate subgroup impacts, and use their own data to generate evidence sufficient for their own decisions.

2018-05-09

Updated Research Guidelines Will Improve Education Technology Products and Provide More Value to Schools

Recommendations include 16 best practices for the design, implementation, and reporting of Usable Evidence for Educators

Palo Alto, CA (April 25, 2018) – Empirical Education Inc. and the Education Technology Industry Network (ETIN) of SIIA released an important update to the “Guidelines for Conducting and Reporting Edtech Impact Research in U.S. K-12 Schools” today.

Authored by Empirical Education researchers, Drs. Denis Newman, Andrew Jaciw, and Valeriy Lazarev, the Guidelines detail 16 best practices for the design, implementation, and reporting of efficacy research of education technology. Recommendations range from completing the product’s logic model before fielding it to disseminating a study’s results in accessible and non-technical language.

The Guidelines were first introduced in July 2017 at ETIN’s Edtech Impact Symposium to address the changing demand for research. They served to address new challenges driven by the accelerated pace of edtech development and product releases, the movement of new software to the cloud, and the passage of the Every Student Succeeds Act (ESSA). The authors committed to making regular updates to keep pace with technical advances in edtech and research methods.

“Our collaboration with ETIN brought the right mix of practical expertise to this important document,” said Denis Newman, CEO of Empirical Education and lead author of the Guidelines. “ETIN provided valuable expertise in edtech marketing, policy, and development. With over a decade of experience evaluating policies, programs, and products for the U.S. Department of Education, major research organizations, and publishers, Empirical Education brought a deep understanding of how studies are traditionally performed and how they can be improved in the future. Our experience with our Evidence as a Service™ offering to investors and developers of edtech products also informed the guidelines.”

The current edition advocates for analysis of usage patterns in the data collected routinely by edtech applications. These patterns help to identify classrooms and schools with adequate implementation and lead to lower-cost faster turn-around research. So rather than investing hundreds of thousands of dollars in a single large-scale study, developers should consider multiple small-scale studies. The authors point to the advantages of looking at subgroup analysis to better understand how and for whom the product works best, thus more directly answering common educator questions. Issues with quality of implementation are addressed in greater depth, and the visual design of the Guidelines has been refined for improved readability.

“These guidelines may spark a rebellion against the research business as usual, which doesn’t help educators know whether an edtech product will work for their specific populations. They also provide a basis for schools and developers to partner to make products better,” said Mitch Weisburgh, Managing Partner of Academic Business Advisors, LLC and President of ETIN, who has moderated panels and webinars on edtech research.

Empirical Education, in partnership with a variety of organizations, is conducting webinars to help explain the updates to the Guidelines, as well as to discuss the importance of these best practices in the age of ESSA. The updated Guidelines are available here: https://www.empiricaleducation.com/research-guidelines/.

2018-04-25

Join Our Webinar: Measuring Ed Tech impact in the ESSA Era

Tuesday, November 7, 2017 … 2:00 - 3:00pm PT

Our CEO, Denis Newman, will be collaborating with Andrew Coulson (Chief Strategist, MIND Research Institute) and Bridget Foster (Senior VP and Managing Director, SIIA) to bring you an informative webinar next month!

This free webinar (Co-hosted by edWeb.net and MCH Strategic Data) will introduce you to a new approach to evidence about which edtech products really work in K-12 schools. ESSA has changed the game when it comes to what counts as evidence. This webinar builds on the Education Technology Industry Network’s (ETIN) recent publication of Guidelines for EdTech Impact Research that explains the new ground rules.

The presentation will explore how we can improve the conversation between edtech developers and vendors (providers), and the school district decision makers who are buying and/or piloting the products (buyers). ESSA has provided a more user-friendly definition of evidence, which facilitates the conversation.

  • Many buyers are asking providers if there’s reason to think their product is likely to work in a district like theirs.
  • For providers, the new ESSA rules let them start with simple studies to show their product shows promise without having to invest in expensive trials to prove it will work everywhere.

The presentation brings together two experts: Andrew Coulson, a developer who has conducted research on their products and is concerned with improving the efficacy of edtech, and Denis Newman, a researcher who is the lead author of the ETIN Guidelines. The presentation will be moderated by Bridget Foster, a long-time educator who now directs the ETIN at SIIA. This edWebinar will be of interest to edtech developers, school and district administrators, education policy makers, association leaders, and any educator interested in the evidence of efficacy in edtech.

If you would like to attend, click here to register.

2017-09-28
Archive