blog posts and news stories

U.S. Department of Education Could Expand its Concept of Student Growth

The continuing debate about the use of student test scores as a part of teacher evaluation misses an essential point. A teacher’s influence on a student’s achievement does not end in spring when the student takes the state test (or is evaluated using any of the Student Learning Objectives methods). An inspiring teacher, or one that makes a student feel recognized, or one that digs a bit deeper into the subject matter, may be part of the reason that the student later graduates high school, gets into college, or pursues a STEM career. These are “student achievements,” but they are ones that show up years after a teacher had the student in her class. As a teacher is getting students to grapple with a new concept, the students may not demonstrate improvements on standardized tests that year. But the “value-added” by the teacher may show up in later years.

States and districts implementing educator evaluations as part of their NCLB waivers are very aware of the requirement that they must “use multiple valid measures in determining performance levels, including as a significant factor data on student growth …” Student growth is defined as change between points in time in achievement on assessments. Student growth defined in this way obscures a teacher’s contribution to a student’s later school career.

As a practical matter, it may seem obvious that for this year’s evaluation, we can’t use something that happens next year. But recent analyses of longitudinal data, reviewed in an excellent piece by Raudenbush show that it is possible to identify predictors of later student achievement associated with individual teacher practices and effectiveness. The widespread implementation of multiple-measure teacher evaluations is starting to accumulate just the longitudinal datasets needed to do these predictive analyses. On the basis of these analyses we may be able to validate many of the facets of teaching that we have found, in analyses of the MET data, to be unrelated to student growth as defined in the waiver requirements.

Insofar as we can identify, through classroom observations and surveys, practices and dispositions that are predictive of later student achievement such as college going, then we have validated those practices. Ultimately, we may be able to substitute classroom observations and surveys of students, peers, and parents for value-added modeling based on state tests and other ad hoc measures of student growth. We are not yet at that point, but the first step will be to recognize that a teacher’s influence on a student’s growth extends beyond the year she has the student in the class.

2014-08-30

Does 1 teacher = 1 number? Some Questions About the Research on Composite Measures of Teacher Effectiveness

We are all familiar with approaches to combining student growth metrics and other measures to generate a single measure that can be used to rate teachers for the purpose of personnel decisions. For example, as an alternative to using seniority as the basis for reducing the workforce, a school system may want to base such decisions—at least in part—on a ranking based on a number of measures of teacher effectiveness. One of the reports released January 8 by the Measures of Effective Teaching (MET) addressed approaches to creating a composite (i.e., a single number that averages various aspects of teacher performance) from multiple measures such as value-added modeling (VAM) scores, student surveys, and classroom observations. Working with the thousands of data points in the MET longitudinal database, the researchers were able to try out multiple statistical approaches to combining measures. The important recommendation from this research for practitioners is that, while there is no single best way to weight the various measures that are combined in the composite, balancing the weights more evenly tends to increase reliability.

While acknowledging the value of these analyses, we want to take a step back in this commentary. Here we ask whether agencies may sometimes be jumping to the conclusion that a composite is necessary when the individual measures (and even the components of these measures) may have greater utility than the composite for many purposes.

The basic premise behind creating a composite measure is the idea that there is an underlying characteristic that the composite can more or less accurately reflect. The criterion for a good composite is the extent to which the result accurately identifies a stable characteristic of the teacher’s effectiveness.

A problem with this basic premise is that in focusing on the common factor, the aspects of each measure that are unrelated to the common factor get left out—treated as noise in the statistical equation. But, what if observations and student surveys measure things that are unrelated to what the teacher’s students are able to achieve in a single year under her tutelage (the basis for a VAM score)? What if there are distinct domains of teacher expertise that have little relation to VAM scores? By definition, the multifaceted nature of teaching gets reduced to a single value in the composite.

This single value does have a use in decisions that require an unequivocal ranking of teachers, such as some personnel decisions. For most purposes, however, a multifaceted set of measures would be more useful. The single measure has little value for directing professional development, whereas the detailed output of the observation protocols are designed for just that. Consider a principal deciding which teachers to assign as mentors, or a district administrator deciding which teachers to move toward a principalship. Might it be useful, in such cases, to have several characteristics to represent different dimensions of abilities relevant to success in the particular roles?

Instead of collapsing the multitude of data points from achievement, surveys, and observations, consider an approach that makes maximum use of the data points to identify several distinct characteristics. In the usual method for constructing a composite (and in the MET research), the results for each measure (e.g., the survey or observation protocol) are first collapsed into a single number, and then these values are combined into the composite. This approach already obscures a large amount of information. The Tripod student survey provides scores on the seven Cs; an observation framework may have a dozen characteristics; and even VAM scores, usually thought of as a summary number, can be broken down (with some statistical limitations) into success with low-scoring vs. with high-scoring students (or any other demographic category of interest). Analyzing dozens of these data points for each teacher can potentially identify several distinct facets of a teacher’s overall ability. Not all facets will be strongly correlated with VAM scores but may be related to the teacher’s ability to inspire students in subsequent years to take more challenging courses, stay in school, and engage parents in ways that show up years later.

Creating a single composite measure of teaching has value for a range of administrative decisions. However, the mass of teacher data now being collected are only beginning to be tapped for improving teaching and developing schools as learning organizations.

2013-02-14

Can We Measure the Measures of Teaching Effectiveness?

Teacher evaluation has become the hot topic in education. State and local agencies are quickly implementing new programs spurred by federal initiatives and evidence that teacher effectiveness is a major contributor to student growth. The Chicago teachers’ strike brought out the deep divisions over the issue of evaluations. There, the focus was on the use of student achievement gains, or value-added. But the other side of evaluation—systematic classroom observations by administrators—is also raising interest. Teaching is a very complex skill, and the development of frameworks for describing and measuring its interlocking elements is an area of active and pressing research. The movement toward using observations as part of teacher evaluation is not without controversy. A recent OpEd in Education Week by Mike Schmoker criticizes the rapid implementation of what he considers overly complex evaluation templates “without any solid evidence that it promotes better teaching.”

There are researchers engaged in the careful study of evaluation systems, including the combination of value-added and observations. The Bill and Melinda Gates Foundation has funded a large team of researchers through its Measures of Effective Teaching (MET) project, which has already produced an array of reports for both academic and practitioner audiences (with more to come). But research can be ponderous, especially when the question is whether such systems can impact teacher effectiveness. A year ago, the Institute of Education Sciences (IES) awarded an $18 million contract to AIR to conduct a randomized experiment to measure the impact of a teacher and leader evaluation system on student achievement, classroom practices, and teacher and principal mobility. The experiment is scheduled to start this school year and results will likely start appearing by 2015. However, at the current rate of implementation by education agencies, most programs will be in full swing by then.

Empirical Education is currently involved in teacher evaluation through Observation Engine: our web-based tool that helps administrators make more reliable observations. See our story about our work with Tulsa Public Schools. This tool, along with our R&D on protocol validation, was initiated as part of the MET project. In our view, the complexity and time-consuming aspects of many of the observation systems that Schmoker criticizes arise from their intended use as supports for professional development. The initial motivation for developing observation frameworks was to provide better feedback and professional development for teachers. Their complexity is driven by the goal of providing detailed, specific feedback. Such systems can become cumbersome when applied to the goal of providing a single score for every teacher representing teaching quality that can be used administratively, for example, for personnel decisions. We suspect that a more streamlined and less labor-intensive evaluation approach could be used to identify the teachers in need of coaching and professional development. That subset of teachers would then receive the more resource-intensive evaluation and training services such as complex, detailed scales, interviews, and coaching sessions.

The other question Schmoker raises is: do these evaluation systems promote better teaching? While waiting for the IES study to be reported, some things can be done. First, look at correlations of the components of the observation rubrics with other measures of teaching such as value-added to student achievement (VAM) scores or student surveys. The idea is to see whether the behaviors valued and promoted by the rubrics are associated with improved achievement. The videos and data collected by the MET project are the basis for tools to do this (see earlier story on our Validation Engine.) But school systems can conduct the same analysis using their own student and teacher data. Second, use quasi-experimental methods to look at the changes in achievement related to the system’s local implementation of evaluation systems. In both cases, many school systems are already collecting very detailed data that can be used to test the validity and effectiveness of their locally adopted approaches.

2012-10-31

Research: From NCLB to Obama’s Blueprint for ESEA

We can finally put “Scientifically Based Research” to rest. The term that appeared more than 100 times in NCLB appears zero times in the Obama administration’s Blueprint for Reform, which is the document outlining its approach to the reauthorization of ESEA. The term was always an awkward neologism, coined presumably to avoid simply saying “scientific research.” It also allowed NCLB to contain an explicit definition to be enforced—a definition stipulating not just any scientific activities, but research aimed at coming to causal conclusions about the effectiveness of some product, policy, or laboratory procedure.

A side effect of the SBR focus has been the growth of a compliance mentality among both school systems and publishers. Schools needed some assurance that a product was backed by SBR before they would spend money, while textbooks were ranked in terms of the number of SBR-proven elements they contained.

Some have wondered if the scarcity of the word “research” in the new Blueprint might signal a retreat from scientific rigor and the use of research in educational decisions (see, for example, Debra Viadero’s blog). Although the approach is indeed different, the new focus makes a stronger case for research and extends its scope into decisions at all levels.

The Blueprint shifts the focus to effectiveness. The terms “effective” or “effectiveness” appear about 95 times in the document. “Evidence” appears 18 times. And the compliance mentality is specifically called out as something to eliminate.

“We will ask policymakers and educators at all levels to carefully analyze the impact of their policies, practices, and systems on student outcomes. … And across programs, we will focus less on compliance and more on enabling effective local strategies to flourish.” (p. 35)

Instead of the stiff definition of SBR, we now have a call to “policymakers and educators at all levels to carefully analyze the impact of their policies, practices, and systems on student outcomes.” Thus we have a new definition for what’s expected: carefully analyzing impact. The call does not go out to researchers per se, but to policymakers and educators at all levels. This is not a directive from the federal government to comply with the conclusions of scientists funded to conduct SBR. Instead, scientific research is everybody’s business now.

Carefully analyzing the impact of practices on student outcomes is scientific research. For example, conducting research carefully requires making sure the right comparisons are made. A study that is biased by comparing two groups with very different motivations or resources is not a careful analysis of impact. A study that simply compares the averages of two groups without any statistical calculations can mistakenly identify a difference when there is none, or vice versa. A study that takes no measure of how schools or teachers used a new practice—or that uses tests of student outcomes that don’t measure what is important—can’t be considered a careful analysis of impact. Building the capacity to use adequate study design and statistical analysis will have to be on the agenda of the ESEA if the Blueprint is followed.

Far from reducing the role of research in the U.S. education system, the Blueprint for ESEA actually advocates a radical expansion. The word “research” is used only a few times, and “science” is used only in the context of STEM education. Nonetheless, the call for widespread careful analysis of the evidence of effective practices that impact student achievement broadens the scope of research, turning all policymakers and educators into practitioners of science.

2010-03-17
Archive